Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A computational thermodynamics approach has been employed to design CoCrFeMnNi-based medium- and high- entropy alloys (M/HEAs) with systematically varied compositions (Co((80-X)/2)Cr((80-X)/2)FeXMn10Ni10 with x = 30, 40, and 50 at.%) and phase stability. Since the formation of sigma phase, usually brittle and undesirable, is a common concern, when this class of alloys is subjected to elevated temperatures (600–1000 ◦C), predicting its formation becomes essential. Thus, its formation and the phase equilibria were studied using the CALPHAD method, and two empirical methods, namely, valence electron concentration (VEC) and paired sigma-forming element (PSFE). Isothermal aging treatments at 900–1100 ◦C for 20 h were performed, since CALPHAD and VEC/PSFE predictions diverged. Both prediction methods were compared with experimental characterization by a combination of scanning electron microscopy and high-energy synchrotron X-ray diffraction. The predictions from the VEC/PSFE and CALPHAD calculations (depending on the database used) were shown to be quite accurate.more » « less
-
Abstract The individual effects of strain rate and temperature on the strain hardening rate of a quenched and partitioned steel have been examined. During quasistatic tests, resistive heating was used to simulate the deformation-induced heating that occurs during high-strain-rate deformation, while the deformation-induced martensitic transformation was tracked by a combination of x-ray and electron backscatter diffraction. Unique work hardening rates under various thermal–mechanical conditions are discussed, based on the balance between the concurrent dislocation slip and transformation-induced plasticity deformation mechanisms. The diffraction and strain hardening data suggest that the imposed strain rate and temperature exhibited dissonant influences on the martensitic phase transformation. Increasing the strain rate appeared to enhance the martensitic transformation, while increasing the temperature suppressed the martensitic transformation.more » « less
-
Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instantaneous strain hardening rates. This paper explores the influence of martensitic transformation and strain hardening on tensile performance. Tensile tests were performed on steels with nominally similar compositions and microstructures (11.3 to 12.6 vol. pct retained austenite and 16.7 to 23.4 vol. pct ferrite) at 980 and 1180 MPa ultimate tensile strength levels. For each steel, tensile performance was generally consistent along different orientations in the sheet relative to the rolling direction, but a greater amount of austenite transformation occurred during uniform elongation along the rolling direction. Neither the amount of retained austenite prior to straining nor the total amount of retained austenite transformed during straining could be directly correlated to tensile performance. It is proposed that stability of retained austenite, rather than austenite volume fraction, greatly influences strain hardening rate, and thus controls strength and ductility. If true, this suggests that tailoring austenite stability is critical for optimizing the forming response and crash performance of quenched and partitioned grades.more » « less
An official website of the United States government
